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Abstract-A methodology is set forth for the numerical solution of transient two-dimensional diffusion-type 
problems (e.g. heat conduction)in which one of the boundaries of the solution domain moves with time. The 
moving boundary is immobilized by a coordinate transformation, but the transformed coordinates are, in 
general, not orthogonal. Furthermore, with respect to a given control volume in the new coordinate system, 
mass appears to pass through the control surface which bounds the volume, and this mass movement brings 
about a convection-like transport of energy. The energy equation for a moving, nonorthogonal control 
volume is derived in general and then specialized to the transformed coordinate system associated with the 
immobilization of the moving boundary. A fully implicit scheme is used to discretize the control volume 
energy equation. The spatial derivatives are discretized by either of two schemes depending on the size of the 
pseudo-convection relative to the diffusion. The energy balance at the moving boundary of the solution 
domain is also transformed and discretized. A numerical procedure is then developed for solving the 
discretized energy equations. The use of the control volume formulation and the solution methodology will 
be illustrated for a specific physical situation in a companion paper that follows this paper in the journal. 

NOMENCLATURE 

arbitrary function ; 
axial extent of solution domain; 
natural convection heat transfer coefficient ; 
unit vector in r-direction ; 
unit vector in z-direction ; 
thermal conductivity; 
unit vector along normal; 
temperature; 
fusion temperature; 
temperature of liquid melt; 
dimensionless radial coordinate, r/r,,,; 

radial coordinate; 
radial coordinate at inner boundary of so- 
lution domain ; 
radial coordinate at the moving boundary ; 
control surface ; 
Stefan number ; 
time ; 
velocity of control volume boundary; 
velocity of moving boundary ; 
control volume ; 
axial coordinate ; 

Greek symbols 

a, thermal diffusivity ; 
B> function, rl(aa/ay); 
r, function, equation (25); 
A, dimensionless thickness, 6/r,; 

4 radial thickness of solution domain ; 
rl> transformed coordinate, (r - rJ6; 

8, dimensionless temperature; 

A, function, equation (25); 

3 *, latent heat of fusion ; 

5, transformed coordinate, z/r,,,; 

P7 density; 

7, dimensionless time, (at/r$)Ste; 

X9 function, (1 + p2); 

$9 function, equation (25); 

Q function, equation (24). 

Subscripts 
P, N,S,E, W locations of grid points, Fig. 2. 

Superscript 

7, at time 7 ; 

no superscript denotes time (7 + 67). 

INTRODUCTION 

DURING the freezing of a liquid on a cooled surface, a 
solidified layer is formed which increases in thickness 
as time passes. Thus, the heat conduction across the 
solid from the liquid-solid interface to the cooled 
surface takes place in a domain whose size and shape 
change with time. In addition to heat conduction 
during freezing, there are other relevant technical 
problems where diffusion processes take place in 
regions which have one or more moving boundaries. 
Only a limited number of moving boundary problems 
admit an analytical solution. These include, in the 
main, the classical one-dimensional Stefan and Neu- 
mann problems and their variants [1,2]. Numerical 
techniques are generally required for the solution of 
two-dimensional moving boundary problems as well 
as for many one-dimensional problems. 
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FIG. I. Schematic diagram of a representative two- 
dimensional moving boundary problem showing the trans- 

formed coordinates r and q. 

The focus of this paper is the development of a 
methodology for the numerical solution of two- 
dimensional diffusion-type moving boundary prob- 
lems (i.e. problems where the moving boundary does 
not lie along a coordinate line). The basis of the 
method is a coordinate transformation which causes 
the moving boundary to be stationary in the trans- 
formed coordinate system. In general, the transformed 
coordinate system will not be an orthogonal one. As a 
consequence, the derivation of a finite-difference repre- 
sentation of the conservation equations involves fea- 
tures that are not found in conventional diffusion 
problems where orthogonal coordinate systems are 
the rule. 

The use of a coordinate transformation to immobil- 
ize a moving boundary in two-dimensional diffusion 
problems has already been described in papers by 
Saitoh [3] and by Duda et al. [4]. Their approach was 
to apply the immobilizing coordinate transformation 
to the differential equation of energy conservation, 
which results in a relatively more complex differential 
equation that reflects the nonorthogonal nature of the 
coordinates (e.g. there are mixed derivatives involving 
both space coordinates). Then, each term of the 
transformed differential equation is individually dis- 
cretized by employing established techniques for ap- 
proximating derivatives by differences. 

The present approach differs in a fundamental way 
from that of [3] and [4] ; indeed, the only common 
ground is the use of a coordinate transformation to 
immobilize a moving boundary. Here, use is made of 
the control volume formulation to obtain the 
difference equations. There are two features of the 
control volume approach which appear especially 
attractive. One of these is that it facilitates physical 
interpretation of the terms which result from the 
coordinate transformation. Thus, for example, a 
convection-like transport of energy can be identified 

which results from the movement of mass across 
coordinate lines in the transformed domain. The 
second attractive feature of the control volume ap- 
proach is that it ensures global energy conservation. 

It is to be expected that the formulation of a control 
volume approach in a nonorthogonal coordinate 
system will involve more analysis than is required 
when control volumes are used in conventional ortho- 
gonal coordinates. The first step is to derive the energy 
conservation principle for a control volume bounded 
by coordinate lines in the nonorthogonal transformed 
coordinate system. Then, this conservation principle, 
which is in integral form, is discretized to yield the 
governing algebraic equations of the problem. The 
discretization takes different forms depending on the 
importance of the aforementioned pseudo-convective 
transport of energy relative to the diffusive transport. 
For most moving boundary problems, the pseudo- 
convection is small compared with the diffusion, and a 
relatively simple discretization scheme can be used. 
For those cases where convection is a significant 
contributor, a more elaborate discretization is needed. 
Both of these discretizations are discussed in the paper. 
Indeed, the opportunity to readily distinguish the two 
types of discretizations is a dividend provided by the 
control volume formulation. The analysis also takes 
account of the energy balance at the moving boundary. 
That energy balance includes terms which reflect the 
physical processes which are responsible for the move- 
ment of the boundary. 

When this work was first undertaken, the primary 
motivation was to solve a specific physical problem. 
However, as the work progressed, it became evident 
that the solution methodology was of interest in its 
own right. It also became apparent that the description 
of the method would require a paper-length pre- 
sentation, such that the inclusion of results for a 
specific problem would give rise to an inordinately 
long paper in which the numerical results, languishing 
near the end, might well lose their impact. Therefore, a 
two-paper sequence has been prepared. The present 
paper describes the methodology, while the following 
paper (pp. 134551357) illustrates the application ofthe 
methodology in terms of a specific physical problem. 

The control volume formulation presented here 
leans heavily on the work of Hossfeld [5]. Hossfeld 
solved the problem of natural convection in the liquid 
melt adjacent to a heated tube situated in a solid phase- 
change medium. Although this paper deals with 
problems different from that of Hossfeld, his control 
volume approach continues to be applicable. It has 
been adapted and recast in a form that is appropriate 
for the present class of problems. 

THE CONTROL VOLUME FORMULATION 

Description of the problem 
In the development which follows, attention will be 

focused on axisymmetric problems, with the for- 
mulation for plane problems falling out as a special 
case. A schematic view of the situation to be studied is 
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shown in Fig. 1. As seen there, the solution domain 
has a stationary inner boundary whose radius is r = rw 
(e.g. the wall of a tube). The outer boundary moves 
with time and is curved; its radial coordinate will be 
denoted by rd(z, t) while the instantaneous thickness of 
the layer at z is 6(z, t). The lower and upper boundaries, 
respectively at z = 0 and z = H, are fixed. 

For concreteness, the solution methodology will be 
phrased in terms of transient heat conduction, al- 
though it is equally applicable to other analogous 
transient diffusion-dominated problems. If a specific 
problem were to be considered, then the thermal 
conditions at the boundaries of the solution domain 
would have to be given. However, the specific nature of 
the thermal boundary conditions at the nonmoving 
boundaries I = r,,,, z = 0 and z = H does not affect the 
unique features of the solution methodology (i.e. those 
related to the presence of a curved moving boundary). 
Indeed, although the methodology takes cognizance of 
the curved moving boundary, it can be developed 
without consideration of the mechanism which causes 
the boundary to move. 

In light of the foregoing, neither the boundary 
conditions at the fixed boundaries nor at the moving 
boundary will be considered during the main part of 
the formulation of the solution methodology. Once 
that development has been completed, some con- 
sideration will be given to a representative thermal 
condition at the moving boundary. The role of the 
thermal conditions at all the boundaries will be 
illustrated in the solution to the specific problem that is 
described in the companion paper. 

The moving control volume 
The first step in the analysis is to introduce a 

transformation of coordinates which immobilizes the 
moving boundary 

rl = (r - r,)/h, 5 = z/r, (1) 

so that 1 = 1 at all points on the moving boundary at 
all times. In terms of the new coordinates, the solution 
domain is defined by0 I 5 I Hfr,,O I q I 1. Lines of 
5 = constant and 9 = constant are illustrated in Fig. 1. 
It is evident that a control volume contained between 
lines q = ql, q = q2 and 5 = 11, < = t2 is a curvilinear 
element with nonorthogonal sides. 

It is relevant to examine the behavior of the 
aforementioned control volume as the moving boun- 
dary advances. If the moving boundary were to 
advance from a position represented by the solid line in 
Fig. 1 to a position represented by the dashed line, the 
lines q = q1 and r~ = q2 would also advance, as 
indicated by the corresponding dashed lines (the 5 = 
<I and 5 = t2 lines remain stationary). Thus, as the 
boundary moves rightward, the control volume also 
moves rightward. This motion is responsible for a 
convection-like transfer of energy across the r] = 
constant faces of the control volume. 

Energy conservation for the control volume 
To derive the energy conservation equation for the 

moving control volume, use is made of a generalization 
of the Leibniz rule for differentiation of an integral 

in which V and S denote the volume and surface of the 
control volume, respectively, n is the local unit vector 
normal to the surface, and ub is the velocity of the 
boundary. The quantity f is any function of position 
and time, which will be associated here with a dimen- 
sionless temperature 0 (suitably defined for each 
specific problem) and substituted into equation (2). 

The derivative 30/i% which appears in equation (2) 
after the substitution f = 0 can be eliminated by 
employing the energy equation 

de/at = aV2e. 

It may also be noted that 

(3) 

~“v2ed~=~sve..dS (4) 

so that equation (2) becomes 

d,dt[ ~“edV]=~s(ave+e”,).ndS (5) 

which expresses energy conservation for the moving 
control volume. 

To facilitate evaluation of the surface integral that 
appears on the right-hand side of equation (5), ref- 
erence may be made to the enlarged version of the 
control volume that is shown at the upper right of Fig. 
1. As suggested there, the surface integral may be 
subdivided into a sum of four surface integrals, 
respectively over the segments Sl, S2, S3 and S4. It 
may also be noted that since the control volume moves 
radially outward with time, ub = 0 on S2 and S4. 

For the evaluation of the surface integrals, ex- 
pressions are needed for the element of surface dS, the 
unit vector n, the boundary velocity ub, and the 
gradient operator V. To derive these expressions, it is 
first necessary to consider a formal coordinate trans- 
formation from (r, z, t) to (q, l, 7). Among these, 4 and 5 
have already been defined by equation (l), while 7 is a 
dimensionless time given by 

7 = (at/ri)Ste (6) 

where Ste, the Stefan number, is a constant parameter 
to be assigned for each solution. The presence of Ste in 
the dimensionless time 7 is entirely arbitrary, and it 
may be omitted (i.e. set equal to one). However, for 
certain thermal conditions at the moving boundary of 
the domain (r = rdr 1 = l), the definition (6) eliminates 
Ste from the boundary condition, thereby justifying 
the form of the definition. 

The transformation equations are 

(alar),., = (IirWA)(WW5, (7) 

(a/az),., = - (M+)(a/WZ.~ + (I/r,)(alX),, (8) 
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x [ - (rl/A)(aAlar,(Sldrl)~,,+(dl~t)~,,l (9) 

in which 

A = a/+,, B = ~(~A/~~). (10) 

The evaluation of the right-hand side of equation (5) 
over St will now be performed. The surface element dS 
may be written as 

dS = 2nr(drz -+ dz2)1’z 

= tnrdz[l + (drJdz)2]“2 (it) 

dS = 2nr$RX’ I2 d4 (12) 

with 

x = 1 + p2, R = r/r, = 1 + VA. (13) 

The unit vector n that is normal to Si is obtained by 
noting that the gradient of v is normal to a line of 
constant q, so that 

n = Vll/lVl?l. (14) 

The gradient operator V in axisymmetric cylindrical 
coordinates is 

V = I@/&) + iJ8/&). (15) 

By making use of equations (7) and (8), V takes the 
form 

V = ~~(l/~~A)~~/~~) 

+ %C-- (~/r~A)(~/~~) + U/r,N%XIl. (16) 

When equation (16) is employed in conjunction with 
(14), there is obtained 

n = (ir - &)/x’!~. (17) 

Also, since Sl moves radially outward with time 

ub = &dr/(?t):,, = ~&aSte/r,)(dA/&). (18) 

Equations (11) and (16)-(18) contain all the in- 
gredients needed to evaluate the right-hand side of 
equation (5) over Si. The result is 

j 

;r 
27cr,or [(~/A)~~~~~~) 

t, 

- ~(LW/~~) + #?te(aA/dr)] R d<. (19) 

The evaluation of the integral over S3 follows steps 
identical to those for S’ and, therefore, there is no need 
to display the derivation for the S3 boundary. 

The evaluation of the right-hand side of equation (5) 
over surfaces S2 and S4 is simpler than the just- 
completed evaluation for surfaces Sl and S3. This is 
because for S2 and 54, the normal to the surface is 
parallel to the z (or 5) axis, and I+, = 0. Thus, for 
example, for S2 

n = 5, VO - n = - (pjr,A) 

x @@/all) + (Ur,)(a~J%Y. (20) 

Furthermore, 

dS = 2nr dr = 2nrtRA dv. (21) 

With equations (20) and (21), the right-hand side of 
equation (.5), when evaluated for surface S2, becomes 

Aside from a multiplicative minus sign, the integral 
over S4 consists of the same terms as those of equation 

(22). 
Attention may now be turned to the volume integral 

that appears on the left-hand side of equation (5). The 
volume element dV can be written as 

dV = 2rrr dr dz = 2nriRA dq dc (23) 

and the total derivative d/dt can be transformed to 
dJdr in accordance with equation (6). 

With the aid of the expressions derived in the 
preceding paragraphs, the general integral energy 
balance (5) can be specialized to the moving curvi- 
linear control volume defined by the lines 5 = 
constant, q = constant. For compactness, it is con- 
venient to introduce the abbreviations 

Q = R[ - (~/A~(~~/~~) - ~~Sre{~AJ~? )] (24) 

A = pqasjat), I- = - RA(~~~/~~), 

* = pR(ao/iiv). (25) 

Then, the form of the integral energy balance appro- 
priate to the moving control volume is 

As written, equation (26) has the appearance of an 
energy balance for a fixed control volume across whose 
faces energy is transferred by both conduction and 
convection. The terms -(Rx/A) (a@/??) and 
- RA(CXI/ac) are respectively proportional to diffusive 
heat flows (i.e. conduction) in the positive q- and 
positive c-directions, while the term -~R0Ste(?b/Z~) 
is proportional to a pseudo-convective energy transfer 
in the positive ?~-dir~tion. The A and $ terms can also 
be thought of as representing heat conduction. Thus, A 
denotes conduction driven across an v face by a 
temperature gradient in the <-direction, while I- repre- 
sents conduction across a r face driven by an q 
temperature gradient. Such cross terms are encoun- 
tered in anisotropic materials [l. p. 381. 

The origins of the pseudo-convection and the 
pseudo-anisotropic diffusion can be readily identified. 
The former is a consequence of the movement of the 
control volume, while the latter is due to the non- 
orthogonal nature of the control volume boundaries. 
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FIG. 2. An array of control volumes in the <, q plane. 

Finite-dtfference formulation 
A fully implicit finite-difference form of the energy 

equation (26) will now be deduced. To facilitate the 
derivation, an array ofcontrol volumes in the F_, rl plane 
is pictured in Fig. 2. The control volume of specific 
interest is that which surrounds the grid point P. Note 
that the grid points are centered in the respective 
control volumes. The superscript z will denote quan- 
tities to be evaluated at timer, while quantities without 
the superscript are to be evaluated at time (r + 67). 
With this notation, a fully implicit form of equation 
(26) is 

[RAB - (RAB)$@@qSte/&) 

in which the subscript P denotes quantities evaluated 
at the grid point P that is centered in the control 
volume of interest (see Fig. 2). 

Whereas equation (27) displays the discretization of 
the time derivative, the spatial derivatives, which are 
contained within 51, r, A and $, remain to be 
discretized. The choice of a scheme to be employed for 
the spatial discretization depends on the relative 
importance of convection relative to diffusion. When 
convection is small, central differencing (or its counter- 
part for nonuniform grids) can be used to yield results 
of high accuracy for a suitably small mesh size. On the 
other hand, when convection is large, the differencing 
scheme should account for the special influence of 
upstream points. 

In the physical situations to be considered here, the 
convective transport is actually a pseudo- 
convection-due entirely to the movement of the 
control volumes. The experience of the authors sug- 
gests that the convection will generally be small 
compared with the diffusion, so that the nonuniform- 
grid-counterpart of central differencing should serve 
effectively for the spatial derivatives. Therefore, this 
differencing approach will be the primary one to be 
discussed here. Later, at the end of the paper, a more 
encompassing scheme which can handle strong con- 

vective influences will be described. 
The derivatives ~e/~~ on Sl and S3 and the de- 

rivatives r%/13< on S2 and S4, which appear in the 
quantities Q and r, respectively, are discretized by 
employing straight-line temperature distributions be- 
tween point P and the relevant neighboring grid point. 
Thus, to find %/an on Sl, a straight line is passed 
between t)r and 8, the slope of which yields &?/@ = 

(0, - @&‘PE. Corresponding expressions are applic- 
able for at?/aq on S3 and for %/at on S2 and S4. In 
addition, the 0 values needed for the evaluation of R 
on Sl and S3 are found from these straight-line 
representations. 

The derivatives a~/a~ and %/a< which appear in the 
pseudo-diffusion terms A and $ are discretized by an 
extension of the aforementioned approach. Consider, 
for example, the discretization of gR(%/ag) on S3, 
which comprises the As3 term in equation (27). First, 
the temperature 0. at point a (Fig. 2) is expressed in 
terms of @# and BNW by means of a straight-line 
representation. Similarly, temperatures at c and e are 
represented in terms of eP and Bw and of 8s and t&, 

respectively. Then, derivatives 80/a{ along G and z 
are expressed as 

- - 
(6 - 0,)/=, (0, - @,)/ec. (28) 

The first of these is then multiplied by the value of j?R 
at point b, while the second is multiplied by the fiR 
value at point d. These two quantities are then 
averaged to yield flR(ae/al) on S3. All of the terms 
which appear on the right-hand side of equation (27) 
are discretized in this manner. 

There are two other derivatives in equation (27) 
whose representations remain to be discussed. One of 
these is aA/& which appears in a,, and il,,. This 
derivative is discretized as 

(A - A’)/& (29) 

where both A and b’ correspond to t = &. The 
quantity A is a known quantity (from the prior time 
step), while A is unknown. Its value is determined from 
the thermal boundary condition at the moving boun- 
dary of the solution domain, as will be discussed 
shortly. 

The remaining derivative aA@< appears in both p 
and x. The values of this derivative were obtained by 
differentiation of a second-order spline which was fit to 
the calculated values of A vs 5. The spline fit also 
yielded the A values needed on the left-hand side of 
equation (27) and for the evaluation of R, r and R = 1 
+ qA. 

The description of the dis~retization ofequation (27) 
is now complete. The discretized equation, when 
applied at all grid points where 0 is unknown, provides 
a means for determining 0 at time (r -t- at). In addition 
to the geometrical position variables, the inputs re- 
quired for the solution are the temperature distri- 
bution 8’ and the layer thickness distribution A’, both 
from the prior time step, an.! the layer thickness 
distribution A at the current time step. Whereas 8’ and 
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A will be available as the solution marches forward in 
time, the current distribution of A is unknown. There- 
fore, the determination of the current distribution of A 
has to be coupled with the determination of the current 
distribution of 0. The procedure by which this is 
accomplished will be described shortly. 

Before leaving this section, note may be taken of 
possible interactions between the discretized form of 
equation (27) and the thermal boundary conditions at 
the fixed boundaries. It is not expected that these will 
require numerical treatment that is out ofthe ordinary. 

THERMAL CONDITIONS AT MOVING BOUNDARY 

The thermal boundary condition at the moving 
boundary of the solution domain reflects the physical 
processes which are responsible for the motion. Vari- 
ous specific forms for the boundary condition are 
possible depending on the problem under consider- 
ation. Here, a representative physical situation will be 
considered in order to illustrate how the boundary 
condition participates in the solution for the tempera- 
ture distribution in the layer. 

Suppose that the physical problem is that of the 
freezing of a liquid on a cooled vertical tube. At any 
time t, the solidified material occupies the region I, 5 
r I r&z, t), while the region r > ra(z, t) is occupied by 
liquid. The solid-liquid interface is at the fusion 
temperature T*, while the liquid temperature T, 
exceeds T*. When T, > T*, it is highly likely that 
natural convection will occur in the liquid, with h,Yc 
denoting the natural convection heat transfer coef- 
ficient at the interface (h,, is assumed to be known). 

The thermal condition at such a freezing interface is 

kVT . n = piu, . n + h,,( T II - T*). (30) 

The left-hand side of this equation represents the heat 
that is conducted into the solid from the interface. On 
the right-hand side, the first term expresses the energy 
liberated by the conversion of liquid into solid (3. is the 
latent heat of fusion, and ud is the velocity of the 
moving boundary). The second term on the right is the 
heat delivered to the interface from the liquid by 
natural convection. 

To rephrase equation (30) into a more convenient 
form, it may first be noted that the temperature 
gradient VT is normal to the interface, since T = T* 
= constant along the interface. This characteristic 
facilitates the rephrasing of the left-hand side. The first 
term on the right may be evaluated by following the 
steps previously used to evaluate ut, * n in equation (5). 
The end result of these operations is 

k(aT/&)[l + (ardaz)‘]’ ” = pi.(&6/&) 

x [l+(dr,/dz)‘]-“‘+h,,(T, -T*). (31) 

If AT,,, denotes the temperature difference used to 
nondimensionalize T and -AT,,, is the temperature 
difference which appears in the Stefan number Ste, 
then further transformation of equation (31) yields 

aA’/& = - 2@~/~~)[1 + @A/la@] 

- (2h ,e,/k)[(T, - T*)IAT,,J 
x A[1 + (~?A/a@]i’~. (32) 

The fully implicit finite-difference form of equation 
(32) is 

A = [(RHS 32)& + (~r)2]1*2 (33) 

where RHS 32 denotes the right-hand side of equation 
(32). Aside from A, all of the variables appearing in 
equation (33) pertain to time (7 + 67) and are, 
therefore, unknown. The role played by equation (33) 
in the solutions for the temperature field in the layer 
and the layer thickness A will be described in the next 
section of the paper. 

SOLUTION PROCEDURE 

A computational procedure will now be described 
for solving the difference equations that have been 
derived in the preceding sections of the paper. Suppose 
that the computations at time t have been completed, 
so that the numerical values of f?‘(& q) and A’(<) are 
available. Also available at time r are values of R = 1 
+ VA, 80/L+), and of aA/&& with the latter being 
obtained from a second-order spline fit of A’({). With 
these input values, calculations are to be carried out to 
determine fY(& 9) and A(5) at time (T + 6r). 

The computations begin with the interface energy 
equation (33) which is solved iteratively for A by the 
following procedure. First, the right-hand side of 
equation (32) is evaluated at each grid point 5 (u = 1) 
on the interface by employing known values of aejar7, 
aA/ag, and A from the solution at time 7. With these, a 
distribution A({) is computed from equation (33) and 
aA/at follows from a spline fit. The just-determined A 
and aA/ag are then employed as input to equations 
(32) and (33), with at?/a~ held fixed, and new distri- 
butions A(5) and aA//ag are obtained. These new 
distributions are inputed to (32) and (33) yielding still 
other distributions of A(<) and aA/&& In practice, this 
procedure was found to converge in two or three 
rounds of iteration. 

With tentative values of A, aAla& R = 1 + 44 p = 
@A/at), and x = 1 + 8’ now available at time (7 + 6T), 

attention is turned to the solution of the discretized 
form of equation (27). As already noted, the required 
inputs to equation (27) from time 7 are also available. 
Thus, only the 0 values at the respective grid points 
appear as unknowns, and these appear linearly. Any 
number of available methods, either iterative or direct, 
may be used to solve for the 0 distribution. If an 
iterative method were to be used, it may be convenient 
to treat the right-hand side of equation (27) as a source 
term, the value of which is obtained from the 0 values 
of the preceding iteration. 

The solution of the discretized form of equation (27) 
yields the f3 distribution throughout the layer, from 
which a0jaq can be determined as a function of 5 at the 
interface q = 1. With this information, equations (32) 
and (33) are revisited to obtain, via iteration, a refined 
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result for the distributions of A(5) and aA//a& When 
these distributions have been obtained, attention is 
once again focused on the discretized form of equation 
(27), from which an updated solution for 0(& r)) and for 
de/&) at n = 1 can be determined. 

This procedure of successive visitations with equa- 
tions (32) (33) and (27) is continued until con- 
vergence to a preselected tolerance is obtained. The 
resulting distributions Q(<, 9) and A(& which cor- 
respond to time (r+&), are then used as input to the 
computations for the next time level. 

The starting of the solution at t = 0 offers no special 
difficulties provided that the initial transient is not +co 
fast. However, if the transient is initiated by a step 
change in a boundary condition, it is very difficult to 
obtain an accurate numerical solution at small values 
of time (indeed, errors at small times may propagate to 
larger times). In that event, it is advantageous to seek a 
small-time solution from a simplified model of the 
physical situation. Such a small-time solution, evalu- 
ated at a suitable r>O, can serve as a point of 
departure for the full-blown numerical solution set 
forth in this paper. An illustration of the use of a small- 
time solution will be presented in the applications 
paper which follows on pp. 134551357. 

ALTERNATE DISCRETIZATION 

In the spatial discretization of the control volume 
energy equation (27) as +scr;hed earlier in the paper, 
it was assumed tf. .,,e pseudo-convective transport 
was small compared with the diffusive transport. Now, 
consideration will be given to situations where con- 
vection may not be small, so that a central-difference- 
like discretization of the derivatives is not suitable. The 
alternate discretization leans heavily on the material 
set forth in Chapter 5 of [6], and, specifically, makes 
use of the power-law scheme described on pp. 90-92 of 
that chapter. 

To rephrase equation (27) in a form which enables it 
to be discretized by comparison with a standard 
equation presented in [6], the left-hand side of (27) has 
to be transformed. To this end,f = 1 is introduced into 
equation (2) and ut, -II is evaluated as before from 
equations (17) and (18). The resulting equation is 
rewritten in implicit finite-difference form, yielding 

[RA - (RA)MX~V/~~) = X[~R(aAPr)l,, 

- X[dWW4w (34) 

Equation (34) can be solved for RA, which is then 
introduced into equation (27). After this substitution, 
the resulting equation is completely analogous to 
equation (5.53) of [6], and, in accordance with [6], it 
can be written as 

[(RA)T(0 - fF)],(LG%pSte/~r) + a,&I, - O,v) 

+ ap - 0,) + +ub - 0,) + 6+4b - 0,) = b 

(35) 
HMT 24:8 - D 

where 

and 

a~ = (RA)sz~I(~N - 5~), 

as = W)SM(~P - 5s) 

uE = D,A(IP,I) + i{ -F,,o)}, 

a, = W(IP,I) + {{F3,0)) 

Also, 

D, = (xR/A)siX/(~r - VP), 

D, = (~RlA)s&l(a~ - rlw) 

F, = -6@re[r)R(~A/dr)],,, 

F, = -6@te[r)R(SA/dr)],, 

P, = F,lD,, P, = F,lD,. 

A(x) = {{O, (1 - 0.1x)5}} 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

in which the notation {{xi, x21} means that the larger 
of xi and x2 is to be used. 

The quantity b which appears on the right-hand side 
of equation (35) is equal to the right-hand side of 
equation (27), the discretization of which has already 
been discussed. Furthermore, the derivatives dA/dr 
and aA/a{ are also treated in the same way as in the 
discretization scheme that was described earlier. 

Equations (35)-(41) supplemented by the text 
which follows them, convey a complete statement of 
the alternate discretization scheme. The compu- 
tational procedure for solving the resulting algebraic 
equations is as before. 

CONCLUDING REMARKS 

In this paper, a methodology has been set forth for 
the numerical solution of transient two-dimensional 
diffusion-type problems in which one of the boun- 
daries of the diffusion region moves as time passes. The 
solution method accommodates moving boundaries 
that do not lie along coordinate lines (e.g. curved 
boundaries). 

The moving boundary is immobilized by a coor- 
dinate transformation, but the transformed coor- 
dinates are, in general, not orthogonal. Furthermore, 
as time passes, the coordinate lines of the new coor- 
dinate system sweep across the diffusion region. There- 
fore, with respect to a given control volume in the new 
coordinate system, mass appears to pass through the 
control surface which bounds the volume. This move- 
ment of mass brings about a convection-like transport 
of energy with respect to the given control volume. 

The special feature of the present formulation is the 
use of a control-volume-based energy equation as the 
starting point for the derivation of the finite-difference 
equations. The control volume approach facilitates 
physical interpretation of the novel terms which result 
from the coordinate transformation, including both 
pseudo-convection terms and additional diffusion- 
type terms. Among these, the latter resemble the cross 
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diffusion terms for an anisotropic medium, whereby, boundary energy equation is transformed into the new 
for example, the heat flow in a given direction is driven coordinates and then discretized. 
by a temperature gradient in a different direction. The With the discretized equations thus derived, atten- 

pseudo-convection is due to the aforementioned tion is turned to the scheme for their numerical 
movement of the coordinate lines, while the pseudo- solution. At any time level, the scheme involves a 
anisotropic-diffusion is due to the nonorthogonal succession of visitations with the energy equations 
nature of the transformed coordinates. The capability within the solution domain and with the energy 

of identifying the pseudo-convection terms has rel- equation at the boundary. The specific steps of the 
evance in the selection of a differencing scheme, since solution methodology are described in sufficient detail 
the suitability of central differencing (or its counter- to facilitate their application. 

part for nonuniform grids) depends on whether or not The use of the control volume formulation and the 

convection is small compared with diffusion. solution methodology will be illustrated for a specific 
The energy equation for a moving, nonorthogonal problem in a companion paper that follows this paper 

control volume is first derived in general and is then in the journal. 
specialized to the transformed coordinate system 
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RESOLUTION NUMERIQUE DES PROBLEMES A FRONTIERES MOBILES PAR 
IMMOBILISATION DE LA FRONTIERE ET UN SCHEMA DE DIFFERENCES FINIES AVEC 

VOLUME DE CONTRijLE 

R&sum&On 6tablit une mithode de rtsolution des probltmes de diffusion variable bidimensionnelle 
(conduction thermique) dans lesquels une des frontiires du domaine se d&place en fonction du temps. La 
frontitre mobile est rendue fixe par un changement de coordonnCes, mais celles-ci ne sont pas orthogonales 
en g&&al. Par rapport B un volume de contr8le dans le nouveau systeme de coordonn&es, la masse semble 
passer B travers la surface de contrble qui limite le volume et B ce mouvement de masse est IiC un transport 
d’6nergie. L’dquation d’energie pour un volume de contrble mobile et non orthogonal est obtenue et adaptCe 
au systkme de coordonnles transformtes associC B I’immobilisation de la frontibre. Un schima entitrement 
explicite est utilist pour discrttiser I’Cquation d’Cnergie. Les ddrivCes spatiales sont disc&isles par l’un des 
deux schimas suivant la taille de la pseudo-convection relative i la diffusion. Le bilan d’tnergie $ la front&e 
mobile est aussi transform6 et discrttisd. Une proc6dure numdrique est ensuite divelopp&e pour rtsoudre les 
tquations d’Cnergie disc&is&es. L’utilisation de cette methode est illustree dans un article qui suit ce texte 

dans le meme journal. 
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NUMERISCHE L&SUNG VON PROBLEMEN MIT WANDERNDER GRENZE 
DURCH FESTLEGUNG DER GRENZE MIT HILFE EINES FtiR EIN 

KONTROLLVOLUMEN FORMULIERTEN FINITEN DIFFERENZENVERF AHRENS 

Zusammenfassung-Eine Methode zur numerischen Losung von instationlren zweidimensionalen Diffu- 
sionsproblemen (z. B. Warmeleitung) wird entwickelt, bei denen eine der Grenzen des Losungsgebiets mit der 
Zeit fortschreitet. Die wandernde Grenze wird durch eine Koordinatentransformation festgehalten, wobei 
aber die transformierten Koordinaten im allgemeinen nicht rechtwinklig sind. Ferner stromt in bezugaufein 
gegebenes Kontrollvolumen in dem neuen Koordinatensystem Masse durch die das Volumen begrenzende 
Kontrollfllche, und dieser Massenstrom hat einen konvektionsartigen Energiestrom zur Folge. Die 
Energiegleichung fti ein bewegtes nichtorthogonales Kontrollvolumen wird allgemein hergeleitet und dann fir 
das transformierte System in Verbindung mit dem Festhalten der wandernden Grenze speziell entwickelt. 
Mit einem vollstlndig impliziten Verfahren wird die Energiegleichung fur das Kontrollvolumen diskretisiert. 
Die raumlichen Ableitungen werden mit einem von zwei Verfahren, die von der Grol3e des Verhaltnisses der 
Pseudo-Konvektion zur Diffusion abhangen, diskretisiert. Die Energiebilanz an der wandernden Grenze des 
Losungsgebiets wird ebenfalls transformiert und diskretisiert. Ein numerisches Verfahren wurde dann zur 
Losung dieser diskretisierten Energiegleichungen entwickelt. Die Anwendung des Kontrollvolumenansatzes 
und der Losungsmethode wird fiir einen hestimmten physikalischen Fall in einem Begleitartikel dargestellt 

werden, der dem vorliegenden Ausfatz in dieter Zeitschrift folgen wird. 

YMCJIEHHOE PEIBEHME 3AAAY C J(BIDKYlIIEHCJI 1-PAHMUEH C flOMOlIIbH3 
KOHEYHO-PA3HOCTHOH CXEMbI KOHTPOJIbHOI-0 06’bEMA flJl5l 

QMKCHPOBAHHOH 1-PAHMUbI 

Atinoraunn - ~~LlJlOXeHa MCTOLlAKa ‘I&iCJlCHHOl-0 peIUeHBI 3aLlaq LIH$@y3HOHHOrO TAUP (HaUpHMep. 

TeflJIOnpOBOLlHOCTH). B KOTOpbIX UOJlOTeHUe 0nHOL-i UJ rpaHUU paC',eTHOfi 06JIaCTH 83MeHReTCII a0 

B~MeH~.~BH~eH~erpaHAUbI~)IIKCWpyeTCIIU~O6pa3OBaHUeMKOOp~~HaT.~pA~eMHOBbleKOOp~UHaTb,. 

KaK UpaBUJlO,He OpTOrOHaJbHbI. npW nOJIy'ieHHH KOHTpOJlbHOrO o6beMa B HOBOk CllCTcMe KOOplUiHaT 

B03HAKaeT MaCCOO6MCH ‘iCfJC3 KOHTpOJIbHyH) nOBepXHOCTb, Or~HHWfBalOlUyH, paCCMaTpUBaeMbIfi 

06lSM, KOTOpbIfi npHBOLU4T K KOHBeKTUBHOMy UepeHOCy 3HeprHU. YpaBHeHUe 3HeprU&i LlJISl L,BHHy- 

UlerOCS HeOpTOrOHaJlbHOrO KOHTpOJIbHOrO o6aeMa BbIBORWTCIl 06bWHbIM o6pa3oM. a 3aTCM 3anHCb,- 

BaeTCIl B CBCTCMC KOOpLlUHaT. CBR3aHHOi-4 C @iKCaUHeti W%KyUlei& rpaHWbI. npU amlpOKCHMaU&i~ 

ypaBHeHHR 3HeprUH JlJlR KOHTpOJIbHOrO o6aeMa BCnOJlb3yeTCSl nOJlHOCTbt0 HeRBHal CXeMa. npOCTpdH- 

CTBeHHble llpOH3BOLlHbIe anIIpOKCUMHpyH,TCR OL,HOii W3 nByX CXeM B SBBHCUMOCTR OT COOTHOUIeHAR 

MeWly LlHi$~)‘3&iOHHO~ II KOHBCKTWBHOii COCTaBJlllHJLUBMH. TaKHM XC 06pd30M rIpCO6pd3yCTCfl M 

annpoKcUMspyeTcnypaBHeHse6anaHcaans neexymefica rpaseubr. np&iBOIWiTCR srtcneHHbrti axroprrTM 

peI"eHBR pa3HOCTHbtX ypaBHeHBi? 3HeprHU. MeTOnHKa WCUOJIb30BaHIIR KOHTpOnbHOrO o6beMa II 

vUcneHHor0 anropeTMa UxnlocTpepyeTcr ~a npeMepe pemeHsn qacTHoA @isUvecKoA 3anaqs. 

OIly6JUiKOBaHHOfi B 3TOM Ee HOMepexypHaJla. 


